Lewis Acid Promoted Additions of γ-Alkoxy- and -(Silyloxy)crotylstannanes to (S)-2-(Benzyloxy)propanal

James A. Marshall,* Jill A. Jablonowski, and George P. Luke
Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208

Received July 15, 1994^{\circledR}

Abstract

Additions of the γ-oxygenated allylic stannane MOM ethers (R)-1a, (S)-1a, and silyl ethers $(R)-1 \mathbf{b}$, (S)-1b to (S)-2-(benzyloxy)propanal (2) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and MgBr_{2} were examined in order to establish matched and mismatched preferences. In the BF_{3} reactions, stannanes (R)-1a and $(R)-1 b$ were matched with 2 . The former gave the syn adduct 3 and the cyclopropane 4 as a 93:7 mixture. The OTBS stannanes $(R)-1 b$ and $(S)-1 b$ gave only the syn adducts 7 and 9 , respectively. However, in each case considerable cyclopropane adduct, 8 and 10 respectively, was also formed. When aldehyde 2 was treated with excess racemic stannane, ($R S$)-1a, adduct 3 derived from $(R)-1 \mathbf{1 a}$ was the major product, whereas with ($R S$)-1b, products $\mathbf{7}$ and $\mathbf{8}$ derived from (R)-1b were formed preferentially. Aldehyde 2 showed a preference for MOM ether (S) -1a in the $\mathrm{MgBr}_{2^{-}}$ promoted reaction, but each of the enantiomeric OTBS stannanes $(R)-1 b$ and (S)-1b afforded a single product, the (Z)-syn,syn alcohol 13 from the former and the (E)-syn, syn alcohol 9 from the latter. With excess ($R S$)-1b, aldehyde 2 reacted fastest with $(R)-1 b$, in contrast to the MOM analogue ($R S$)-1a. The racemic (E) stannanes (E)-1a and (E)-1b were likewise examined. In the BF_{3} reaction, the major products (5 from the MOM ether (E)-1a and 9 from the silyl ether (E)-1b) were derived from the (R)-enantiomer. With MgBr_{2}, the OMOM stannane (E)-1a gave rise to a mixture of four adducts arising from both the (R) and (S) enantiomers of the stannane. The OTBS stannane (E)-1b, on the other hand, afforded mainly adduct 9 derived from the (R) enantiomer of stannane (E)-1b.

Introduction

Lewis acid promoted additions of γ-alkoxy allylic stannanes to aldehydes afford monoprotected 1,2-diols in high yield (eq 1). These compounds are of interest as

possible intermediates for the synthesis of carbohydrates and related polyols. ${ }^{1}$ First reported by Quintard ${ }^{2}$ in 1983 (eq 1: $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Et} ; \mathrm{R}^{3}=\mathrm{Ph}$; cat $=\mathrm{BF}_{3} \mathrm{OEt}_{2}$), the reaction was subsequently examined in greater detail by Keck^{3} (eq 1: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{TBS}$ or $\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}$ (OBn), $\mathrm{BOMOCH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right), \mathrm{BnOCH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right), \mathrm{CH}_{3} \mathrm{CH}-$ $(\mathrm{OBOM}) \mathrm{CH}_{2}$, or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OBn}) \mathrm{CH}_{2}$; cat $=\mathrm{MgBr}_{2}$) and Koreeda ${ }^{4}$ (eq 1: $\mathrm{R}^{1}=\mathrm{H}$ or $\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{Ph}$, $o-\mathrm{MeC}_{6} \mathrm{H}_{4}, i$ - Pr , or $c-\mathrm{C}_{6} \mathrm{H}_{11}$; cat $=\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$) and their coworkers. In all cases, racemic or achiral stannanes and aldehydes were employed and the major products were the syn diastereomers.

In 1989 we described a route to enantioenriched γ-alkoxy allylic stannanes such as \mathbf{V} through stereospecific 1,3 -isomerization of the α-alkoxy isomers $\boldsymbol{I V}$ (eq 2). ${ }^{5}$ These stannanes undergo highly selective anti $\mathrm{S}_{\mathrm{E}}{ }^{\prime}$ addi-

[^0]
tions to aldehydes in the presence of Lewis acids, yielding mainly syn adducts VI (eq 3). The TBS ethers $\mathbf{V}\left(\mathrm{R}^{2}=\right.$

t - BuSiMe_{2}) give higher syn:anti product ratios than their MOM or BOM analogues. ${ }^{6}$ In reactions involving chiral α-oxygenated aldehydes, anti products can predominate under certain conditions. ${ }^{7}$

The present study on additions of the crotylstannanes $\mathrm{I}\left(\mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{MOM}\right.$ or TBS $)$ and their (E) counterparts to (S)-2-(benzyloxy)propanal (2) was undertaken to establish reactivity and selectivity patterns for possible applications in polyol synthesis. ${ }^{7}$
$\mathbf{B F}_{3}$-Promoted Additions. The BF_{3}-promoted reaction of stannane (R)-1a with aldehyde 2 afforded a $93: 7$ mixture of (E)-syn, anti 3 and cyclopropyl adduct 4 in 74% yield. ${ }^{8}$ Addition of stannane (S)-1a proceeded in 97% yield and gave a 67:33 mixture of the diastereomeric (E)syn,syn and (E)-anti,anti adducts 5 and 6. Reaction of

[^1]excess racemic stannane ($R S$)-1a with aldehyde 2 afforded a mixture of adducts 3,5 , and 6 in the ratio 59 : $29: 12$ in 59% yield. None of the cyclopropane product 4 could be detected. As expected, the recovered stannane was slightly enriched in the (S)-enantiomer. Evidently, the matched stannane (R)-1a reacts faster than (S)-1a with aldehyde 2 , but only marginally.

The "matched" OTBS stannane (R)-1b added to aldehyde 2 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to give the (E)-syn,anti adduct 7 along with the cyclopropylcarbinol 8 as a 40:60 mixture in 50% yield. Analogous reaction of (S) 1 b with aldehyde 2 proceeded in only 27% yield and afforded a $63: 37$ mixture of (E)-syn,syn adduct 9 and cyclopropylcarbinol 10 . With an excess of racemic stannane ($R S$)-1b, aldehyde 2 gave rise to a 46:50:4 mixture of adducts 7,8 , and 9 in 60% yield along with recovered $(S)-1 b$ of 16% ee. The unprecedented formation of cyclopropylcarbinols in these reactions most likely proceeds by initial attack of the enol ether double bond on the aldehyde-Lewis acid complex of the aldehyde followed by 1,3 -nucleophilic ring closure of the intermediate oxocation as depicted in Figure 3.

$\mathbf{M g B r}_{\mathbf{2}}$-Promoted Additions. We next examined MgBr_{2}-promoted reactions of the (Z)-alkoxy and silyloxy allylic stannanes 1a and 1b with aldehyde 2. In these chelation controlled additions, the (R)-stannane (R)-1a afforded a 75:25 mixture of (E)-anti,syn and (Z)-syn,syn adducts 11 and 12 in 74% yield, whereas stannane (S)1a gave rise to the (E)-syn,syn alcohol 5 in 83% yield. We also detected some 4% of adduct 11 arising from the slight amount of (R)-1a present in the stannane reagent (ee $\sim 90 \%$). Addition of excess racemic stannane ($R S$)1a led to a mixture of three products: 5 (52%), 11 (38\%), and 12 (10%), in 54% yield, along with recovered stannane (R)-1a (7% ee; eq 6). Here, as in the BF_{3} reactions

(S)-1a

with 1a, the matched addition proceeds only slightly faster than the mismatched.

Stannanes $\mathbf{1 b}$ provide an interesting contrast to $\mathbf{1 a}$ in the MgBr_{2}-promoted additions as well. Both (R)-1b and $(S)-1 b$ yield only one adduct with aldehyde 2 . In both cases, a syn,syn product is formed. However, (R) - $\mathbf{1 b}$ gives the (Z) isomer 13 , whereas (S)-1b affords the (E) counterpart 9. Excess racemic $\mathbf{1 b}$ gives rise to a $69: 31$ mixture of 13 and 9 in 93% yield, along with recovered (S)-1b (21% ee; eq 7). Surprisingly, the (Z) product 13 is kinetically favored over the (E) isomer 9.

Additions of (E)-Allylic Stannanes. We also examined additions of the (E)-allylic stannanes (E)-1a and (E) 1b to aldehyde 2. These stannanes are currently available only as racemic mixtures. ${ }^{9}$ The BF_{3} reaction with excess (E)-1a afforded a $c a$. 3:1 mixture of (E)-syn,syn and (E)-syn,anti adducts 5 and 3 along with recovered stannane (54%) and an inseparable less polar unidentified by-product in 60% yield. The TBS analogue (E)-1b gave an 83:17 mixture of the (E)-syn,syn and (E)-syn,anti adducts 9 and $\mathbf{7}$ in 75% yield and recovered stannane (18%) under these conditions (eq 8). Recovered stannane from both reactions showed negligible rotation at the sodium D line.

Stannane (E)-1a gave rise to four adducts: 11 (40\%), 12 (16%), 14 (30%), and 5 (14%), in 86% yield and
recovered stannane (42%) from aldehyde 2 and MgBr_{2}. The former two are derived from the (S) enantiomer of (E)-1a, and the latter two from the (R) stannane. With the TBS analogue (E)-1b, the addition proceeded in 93% yield affording recovered stannane (36%) and an $82: 18$ mixture of (E) - and (Z)-syn,syn adducts 9 and 13 (eq 9).

In both cases, the recovered stannane showed scarcely measurable optical rotation at the sodium D line. ${ }^{9}$

Structure Elucidation of the Major Adducts. The stereochemistry of the MOM adducts 3 , 5 , and 6 was surmised from the ${ }^{1} \mathrm{H}$ NMR spectrum (E double bonds) and through oxidation with the Dess-Martin periodinane reagent. ${ }^{10}$ Alcohol 3 yielded ketone 15, whereas 5 and 6 afforded the epimeric ketone 16 (eq 10). The carbinyl

configuration could be assigned from chemical shift data on the (R)- and (S) O-methyl mandelates 17,18 , and 19 (Figure 1). ${ }^{11}$

Additional evidence for the structure of adduct 5 was secured through methylation followed by hydrogenation then MOM cleavage and hydrogenolysis of the benzyl ether. The resulting diol 24 was converted to the acetonide 25. The ${ }^{1} \mathrm{H}$ NMR spectrum showed coupling of 1.6 Hz for the carbinyl protons $\mathrm{H}_{\mathrm{a}} / \mathrm{H}_{\mathrm{b}}$ and $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{c}}$ in accord with the depicted arrangement (eq 11). The ${ }^{13} \mathrm{C}$ NMR spectrum also showed the acetonide carbons at the expected chemical shifts. ${ }^{12}$
The structure of the TBS adducts 7 and 9 can be assigned by analogy with their MOM counterparts 3 and 5. Support for these assignments was secured from the

[^2]
(R)-17

$\begin{array}{rl}\text { vinyl } \mathrm{Me} & 1.65 \mathrm{ppm} \\ \mathrm{Me} & 0.85 \mathrm{ppm}\end{array}$

(R) $\mathbf{- 1 8}$
$\begin{array}{rl}\text { vinyl } \mathrm{Me} & 1.48 \mathrm{ppm} \\ \mathrm{Me} & 1.19 \mathrm{ppm}\end{array}$

(R)-19
vinyl Me $\quad 1.59 \mathrm{ppm}$
Me $\quad 0.96 \mathrm{ppm}$

(R)-20
vinyl Me $\quad 1.60 \mathrm{ppm}$
$\mathrm{Me} \quad 0.78 \mathrm{ppm}$

(S)-17
1.50 ppm 1.16 ppm

(S)-18
1.62 ppm
0.84 ppm

(S)-19
1.40 ppm
1.18 ppm

(S)-20
1.38 ppm
1.15 ppm

Figure 1. Chemical shift for O-methyl mandelates of adducts $3,5,6$, and 7 .

${ }^{1} \mathrm{H}$ NMR spectra of the O-methyl mandelate derivatives $(R)-20$ and (S)-20 of adduct 7 (Figure 1). Additionally, adduct 9 was converted to the previously prepared diol 24 by O-methylation, then hydrogenation over $\mathrm{Pd}-\mathrm{C}$ and TBS cleavage with TBAF (eq 12).

$9 R=H$
$26 \mathrm{R}=\mathrm{Me}$
$24 R=H$
Our structure assignments for cyclopropanes 8 and 10 are based on ${ }^{1} \mathrm{H}$ NMR coupling constants for the cyclo-

$8 \mathrm{R}=\mathrm{TBS}$				
H	δ, ppm	J, Hz	δ, ppm	$J, \mathrm{~Hz}$
4	0.55	4,5 $=2.9$	0.49	$4,5=2.6$
5	3.36	$5,6=6.6$	3.37	5,6 $=7.0$
6	0.60	$6,4=5.8$	0.66	$6,4=5.6$

Figure 2. Chemical shift data for cyclopropranes 8 and 10.

Figure 3. Reaction pathways leading to cyclopropanes 8 and 10 from stannanes (R)-1a and (S)-1a.
propyl hydrogens $\mathrm{H}_{4}, \mathrm{H}_{5}$, and H_{6} (Figure 2). Both isomers show a small $J_{4,5}$ and a larger $J_{5,6}$ coupling indicative of a trans,cis arrangement, as depicted in Figure 2. ${ }^{13}$

Analogous cyclizations of γ-substituted stannanes have been shown to proceed with inversion at the tin center and the absolute stereochemistry at C6 is assigned accordingly. ${ }^{14}$ In both cases the orientation of the carbocation places the OTBS substituent syn to the adjacent H substituent in what is presumed to be an early transition state. A consideration of the most likely direction of attack on the aldehyde carbonyl, as shown, leads to the indicated tentative assignment for the C3 carbinyl center (Figure 3).

The minor (Z) adduct 12 (see eq 6) from the $\mathrm{MgBr}_{2^{-}}$ initiated additions of MOM stannane (R)-1a was assigned the syn,syn stereochemistry from mechanistic considerations (Figure 6). The (Z)-syn,syn OTBS adduct 13 (see eq 7) afforded aldehyde 28 upon ozonolysis and reductive workup. This aldehyde was also obtained from the (E)syn,syn adduct 9 (eq 13).

Mechanistic Considerations. In his pioneering investigations of BF_{3}-promoted additions of (E) - and (Z) -2-butenylstannanes to aldehydes, Yamamoto found that

[^3]

Figure 4. Acyclic transition states for additions of crotylstannanes to aldehydes promoted by BF_{3}.
syn adducts were favored from both isomeric stannanes. ${ }^{15}$ An acyclic transition state was proposed in which steric interactions between the vinylic CH_{3} of the stannane and the aldehyde substituent R favor the antiperiplanar arrangements $\mathbf{A}(Z)$ and $\mathbf{A}(E)$ (Figure 4). The alternative synclinal transition states $\mathbf{B}(Z)$ and $\mathbf{B}(E)$ suffer from steric interactions between these two groups. ${ }^{16,17}$
In the present study, the vinyl CH_{3} of the stannane is replaced by OMOM or OTBS and both the stannane and aldehyde are chiral. In all cases save one (see eq 6), syn adducts are favored. In the BF_{3} reactions, addition to the aldehyde carbonyl is reagent controlled. The (R / Z) stannanes (R)-1a and (R)-1b preferentially attack the re face and the (S / Z) reagents (S)-1a and (S)-1b the si face of aldehyde 2. The (Z)-MOM reagent (S)-1a affords the anti adduct 6 as a significant minor product, but with the OTBS stannanes 1 b only the syn adducts 7 and 9 are formed (see eq 4 and 5). The (E) stannanes (E)-1a and (E)-1b likewise produce only syn adducts $5,3,9$, and 7 (see eq 8). In the former case, an unidentified chromatographically inseparable by-product detracts from the preparative utility of the reaction. However, no anti products result from either stannane. As these reactions proceed by an anti $\mathrm{S}_{\mathrm{E}}{ }^{\prime}$ pathway, ${ }^{1}$ adducts $\mathbf{3}$ and 7 must be formed from the (S)-enantiomer of stannanes (E)-1a and $(E)-1 b$, whereas 5 and 9 would come from the corresponding (R) antipodes. Preferred arrangements for these additions are depicted in Figure 5.

The minor anti adduct 6 produced in the BF_{3} reaction of (S)-1a with aldehyde 2 (see eq 4) is presumably formed by a synclinal transition state in which the OMOM grouping is gauche to the aldehyde substituent (Figure 5). The higher syn selectivity observed for the OTBS stannanes 1b can be attributed to the greater steric bulk of OTBS, which renders such arrangements less favorable.

[^4]

Figure 5. Transition states for BF_{3}-promoted additions of (R) - and (S)-, (Z) - and (E)-allylic stannes $\mathbf{1 a}$ and $\mathbf{1 b}$ to aldehyde 2 (numbers in parentheses indicate percentage of product derived from the indicated transitions state).

It is not yet clear why the (Z) OTBS stannanes (R) - $\mathbf{1 b}$ and (S)-1b give rise to significant amounts of cyclopropane products 8 and 10 in the BF_{3} reactions. A small amount of cyclopropane 4 is also produced from (R)-1a. Such products are absent from BF_{3} reactions involving (E) stannanes (E)-1a and (E)-1b and the (Z) OMOM stannane (S)-1a. All MgBr_{2} reactions give only the normal $\mathrm{S}_{\mathrm{E}}^{\prime}$ adducts.
The MgBr_{2}-promoted additions are substrate controlled. Only the si face of aldehyde 2 is sterically accessible. With the (Z) OTBS stannanes 1 lb , steric interaction between the aldehyde substituent and the large OTBS group favors formation of the (Z)-syn,syn adduct 13 and the (E)-syn,syn adduct 9 from (R) - 1 b and (\boldsymbol{S})-1b, as illustrated in Figure 6. Based on the structure of products obtained from the racemate and assuming an anti S_{E} ' pathway, the stannanes (E)-1b also show high diastereomeric preferences, as indicated in Figure 6.

In contrast to the (Z) OTBS stannanes (R)-1b and (S)$\mathbf{1 b}$, the (Z) OMOM stannane (R)-1a gives rise to the ant i adduct 11 in the MgBr_{2}-promoted reaction (see eq 6). This adduct must arise through a synclinal transition state as depicted in Figure 6. ${ }^{17,18}$ The s-trans is favored over the s-cis arrangement on steric grounds. As is the case for BF_{3} additions, the larger size of OTBS is presumably responsible for the avoidance of these transition states by stannanes $(R)-\mathbf{1 b},(S)-1 b$, and $(E)-1 b[b o t h(R)$ and (S)].

Conclusions

Of major interest from a synthetic viewpoint is the remarkable differences in selectivity exhibited by the OTBS os OMOM stannanes 1b and 1a. In all cases examined, reactions of the OTBS reagents proceed with high syn diastereoselectivity. This outcome is consistent with Yamamoto transition states (Figure 4) ${ }^{15}$ in which the bulky OTBS grouping is oriented anti to the aldehyde substituent (Figures 5 and 6). The unprecedented formation of cyclopropane products in BF_{3}-promoted reactions, especially those involving OTBS stannane $\mathbf{1 b}$, implies a diminished hyperconjugative participation of the stannane moiety in these situations. Although steric effects may account for most of the observed differences

[^5]

Figure 6. Transition states for MgBr_{2}-promoted additions of (R) - and (S)-, (Z)- and (E)-allylic stannanes $\mathbf{1 a}$ and $\mathbf{1 b}$ to aldehyde 2 (numbers in parentheses indicate percentage of product derived from the indicated transition state).
between stannanes $\mathbf{1 a}$ and $\mathbf{1 b}$, more subtle electronic and orbital interactions could also play a role. ${ }^{19}$ Continued investigation of these factors is clearly desirable.

Experimental Section ${ }^{20}$

(E)-1-(Methoxymethoxy)-3-(tri-n-butylstannyl)-1butene ($(\boldsymbol{E})-1 \mathbf{a})$. To a stirred, cooled $\left(-78^{\circ} \mathrm{C}\right)$ suspension of $1.2 \mathrm{~g}(13.6 \mathrm{mmol})$ of CuCN in 60 mL of THF was added 10.9 $\mathrm{mL}(27.3 \mathrm{mmol})$ of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane). The mixture was warmed slightly until all solids dissolved and was then recooled to $-78^{\circ} \mathrm{C}$. To this stirred solution was added 7.3 mL (27.3 mmol) of $\mathrm{Bu}_{3} \mathrm{SnH}$. The resulting bright yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then a solution of 870 mg (12.4 mmol) of crotonaldehyde in 2 mL of THF cooled to $-78^{\circ} \mathrm{C}$ was added by cannula. The resulting red solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and $4.5 \mathrm{~mL}(37.2 \mathrm{mmol})$ of DMPU was added. After $30 \mathrm{~min}, 4.7 \mathrm{~mL}(62.0 \mathrm{mmol})$ of MOMCl was added. The cold bath was allowed to warm to room temperature and the mixture was stirred for 6 days. During this time the color of the solution changed from deep red to colorless. The reaction was quenched with saturated aqueous NaHCO_{3} and diluted with ether. The phases were separated and the aqueous phase was extracted three times with ether. The combined organic extracts were dried over MgSO_{4} and con-

[^6]centrated under reduced pressure. The crude product was purified by flash chromatography through silica gel with $6: 1$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent, affording $2.1 \mathrm{~g}(42 \%)$ of (E)-1a and $0.7 \mathrm{~g}(14 \%)$ of ($R S$)-1a.
(E)-1a: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.01$ (dd, $J=12.2$, $1.3,1 \mathrm{H}), 5.34(\mathrm{dd}, J=12.2,8.5,1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, 1.98 (dd, $J=7.3,7.3$), $1.45(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.86$ (m, 15 H) ppm ; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,116.1,95.7$, $55.4,29.2,27.3,18.7,17.6,13.7,9.6 \mathrm{ppm}$; HRMS (EI ${ }^{+}$) calcd for $[\mathrm{M}-\mathrm{MOM}] \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{166} \mathrm{Sn}$ 357.1549, found 357.1577. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Sn}$: C, 53.36; $\mathrm{H}, 9.45$. Found: C, 53.12; H , 9.50 .
(+)-(2S,3S,4S)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-ol (3) and 1-(2-(Benzyloxy)-1-hydroxypropyl)-2-(methoxymethoxy)-3-methylcyclopropane (4). To a solution of $36 \mathrm{mg}(0.22 \mathrm{mmol})$ of aldehyde 2 and $100 \mathrm{mg}(0.25$ mmol) of stannane (R)-19 ${ }^{5}$ in 4.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} was added dropwise $30 \mu \mathrm{~L}(0.28 \mathrm{mmol})$ of $\mathrm{BF}_{3}{ }^{\circ} \mathrm{OEt}_{2}$. After 2 h , the reaction was quenched at $-78^{\circ} \mathrm{C}$ with saturated aqueous NaHCO_{3} and allowed to warm to room temperature. The mixture was then diluted with additional NaHCO_{3}, water, and ether. The resulting layers were separated and the aqueous layer was extracted twice with ether. The combined ether extracts were dried over MgSO_{4} and concentrated under reduced pressure. The filtrate was purified by flash chromatography on silica gel. Careful gradient elution with 15-25$35 \%$ ethyl acetate-hexanes afforded 42 mg (69%) of adduct 3 and 3 mg (5%) of cyclopropane 4.

3: $[\alpha]^{26}{ }_{\mathrm{D}}+87.6$ ($c 1.31, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.73(\mathrm{dqd}, J=15.4,6.5,0.6 \mathrm{~Hz}, 1 \mathrm{H})$,
5.36 (ddd, $J=15.4,8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72,4.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, A and B of AB$), 4.59,4.47\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, \mathrm{~A}^{\prime}\right.$ and B^{\prime} of $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$, 4.11 (dd, $J=8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (film) $v 3482,1453,1030 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 235 (2), 161 (3), 115 (14), 91 (100), 86 (17), 69 (17); EIHRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{2}\right.$. OCH_{3}), 235.1334, found 235.1336. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$: $\mathrm{C}, 68.55 ; \mathrm{H}, 8.63$. Found: $\mathrm{C}, 68.56 ; \mathrm{H}, 8.67$.

4: ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (m, 5 H), 4.67 (apparent $\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB), $4.51(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ of AB$), 3.60(\mathrm{dq}, J=6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ $(\mathrm{s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=5.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=8.5,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,128.4,127.6,127.5,97.0,75.3,71.0,58.2$, $55.8,27.5,16.8,14.5 \mathrm{ppm}$.
(2S,3R,4R)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-ol (5). A. From Stannane (S)-1a and BF ${ }_{3}$-OEt t_{2}. The procedure for adduct 3 was followed with $85 \mathrm{mg}(0.52$ mmol) of aldehyde $2,175 \mathrm{mg}(0.43 \mathrm{mmol})$ of stannane (S)-1a, ${ }^{5}$ and $53 \mu \mathrm{~L}(0.52 \mathrm{mmol})$ of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, affording $116 \mathrm{mg}(97 \%)$ of a $67: 33$ mixture of adducts 5 and 6 .
B. From Stannane (S)-1a and $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$: To a solution of 85 mg (0.52 mmol) of aldehyde 2 and $175 \mathrm{mg}(0.43 \mathrm{mmol})$ of stannane (S)-1a in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ was added $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ ($134 \mathrm{mg}, 0.52 \mathrm{mmol}$). After 1 h , the $-20^{\circ} \mathrm{C}$ bath was replaced with a $0^{\circ} \mathrm{C}$ bath. After 1.5 h , the reaction was quenched by the addition of brine. The resulting mixture was diluted with ether and water and the layers were separated. The aqueous layer was extracted three times with ether; the combined ether extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude oil was purified by flash chromatography on silica gel using 15% ethyl acetatehexanes to afford $104 \mathrm{mg}(83 \%)$ of adduct 5: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{ddd}, \mathrm{J}=15.4,8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71,4.52 ; 4.63,4.39$ ($\mathrm{d}, J=6.7 ; 11.5 \mathrm{~Hz}, \mathrm{~A}$ and B of $\mathrm{AB} ; \mathrm{A}^{\prime}$ and B^{\prime} of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$), 4.09 (dd, $J=8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67(\mathrm{dq}, J=4.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (ddd, $J=5.7,4.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,131.4,128.3$, $127.9,127.6,127.5,93.6,77.6,77.3,74.1,70.8,55.7,17.8,15.7$ ppm. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 68.55 ; \mathrm{H}, 8.63$. Found: C, 68.72; H, 8.71.
(2S,3S,4R)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-ol (6): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.25$ (m, $5 \mathrm{H}), 5.71(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddd}, J=15.4,8.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70,4.49 ; 4.57,4.40(2 \mathrm{AB}, J=6.7 ; 11.5 \mathrm{~Hz}, \mathrm{~A}$ and B of $\mathrm{AB} ; \mathrm{A}^{\prime}$ and B^{\prime} of $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right), 4.15(\mathrm{dd}, J=8.5,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (ddd, $J=6.2,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (apparent quintet, actually dq, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,132.4,128.3$, $127.6,126.3,93.3,77.3,75.3,72.9,70.6,55.6,17.9,14.7 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$: $\mathrm{C}, 68.55 ; \mathrm{H}, 8.63$. Found: $\mathrm{C}, 68.33$; H, 8.66.
(2S,3S,4S)-(E)-2-(Benzyloxy)-4-((tert-butyldimethylsilyl) oxy)-5-hepten-3-ol (7) and (1S,2R,3S)-1-[(2S,1R)-2-(Benzyloxy)-1-hydroxypropyl]-2-((tert-butyldimethyl-silyl)oxy)-3-methylcyclopropane (8). The procedure for adduct 3 was followed with stannane $(R)-1 b^{21}(150 \mathrm{mg}, 0.32$ $\mathrm{mmol})$ and aldehyde $2(48 \mathrm{mg}, 0.29 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to which was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(42 \mu \mathrm{~L}, 0.42 \mathrm{mmol})$. The products were separated by flash chromatography on silica gel with 5% ethyl acetate in hexane as eluent to provide adduct 7 ($20 \mathrm{mg}, 20 \%$ yield) and cyclopropane 8 ($30 \mathrm{mg}, 30 \%$ yield).

7: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.58(\mathrm{~m}, 2 \mathrm{H})$, $4.60(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB$), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, B of AB$), 4.29(\mathrm{dd}, J=7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dq}, J=6.4,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33$ (dd, $J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,132.1,128.7$,

[^7]$128.1,127.9,127.8,77.7,75.5,73.6,70.8,30.1,26.3,18.5,18.0$, $15.9,-3.3,-4.4 \mathrm{ppm}$; IR (film) $~ v 3549,1252 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C, $68.52 ; \mathrm{H}, 9.78$. Found: $\mathrm{C}, 68.87 ; \mathrm{H}, 9.76$.

8: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB$), 4.49(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ of AB$), 3.59$ (dq, $J=6.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, $J=8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.60(\mathrm{ddq}, J=6.8,5.8,5.8 \mathrm{~Hz}$, 1 H); 0.55 (ddd, $J=8.2,5.8,2.9,1 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 139.0,128.8,128.0,127.8,77.9,75.4$, $71.1,55.1,28.9,26.2,18.5,16.6,14.3,11.2,-4.6,-4.7 \mathrm{ppm} ;$ IR (film) $\nu 3400,1251 \mathrm{~cm}^{-1}$; MS m / e calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiN}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]$ 368.2621, found 368.2603. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 68.52 ; \mathrm{H}, 9.78$. Found: $\mathrm{C}, 68.30 ; \mathrm{H}, 9.69$.
(2S,3R,4R)-(E)-2-(Benzyloxy)-4-((tert-butyldimethyl-silyl)oxy)-5-hepten-3-ol (9). A. From Stannane (S)-1b and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The procedure described for adduct 3 was employed with stannane $(S)-1 \mathbf{b}^{21}(230 \mathrm{mg}, 0.48 \mathrm{mmol})$ and aldehyde $2(70 \mathrm{mg}, 0.43 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to which was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(52 \mu \mathrm{~L}, 0.51 \mathrm{mmol})$. Flash chromatography on silica gel with 5% ethyl acetate in hexane as eluent provided adduct 9 ($26 \mathrm{mg}, 17 \%$ yield) and cyclopropane 10 (15 $\mathrm{mg}, 10 \%$ yield).
B. From Stannane (S)-1b and MgBr $\mathbf{M E t}_{2}$. The procedure for alcohol 13 was followed with $82 \mathrm{mg}(0.50 \mathrm{mmol})$ of aldehyde $2,243 \mathrm{mg}(0.51 \mathrm{mmol})$ of stannane $(S)-16$ and 155 mg (0.60 mmol) of $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ for 2 h . Purification by silica gel chromatography with 7% ethyl acetate in hexane as eluent provided $125 \mathrm{mg}(71 \%)$ of adduct 9: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.40(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB), $4.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ of AB), 4.18 (dd, $J=6.7,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=6.2,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.0,131.3,128.7,128.6,128.4,127.9,78.4,74.8$, $73.8,71.0,26.3,18.5,18.1,16.4,-3.5,-4.4 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: $\mathrm{C}, 68.52, \mathrm{H}, 9.78$. Found: $\mathrm{C}, 68.56, \mathrm{H}, 9.73$.
(1R,2S,3R)-1-[(1S,2S)-2-(Benzyloxy)-1-hydroxypropyl]-2-((tert-butyldimethylsilyl)oxy)-3-methylcyclopropane (10): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB$), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ of AB$), 3.48$ (dq, $J=6.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dd, $J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.90-1.70(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05, \mathrm{~d}, J=6.2,3 \mathrm{H}, 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.66(\mathrm{dm}, J=$ $6.4,1 \mathrm{H}), 0.49(\mathrm{~m}, 1 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3) $\delta 138.3,128.5,127.8,127.7,79.1,77.2,71.0,54.4,29.7$, $25.9,18.1,16.7,15.7,10.7,-4.4,-5.1 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 68.52, \mathrm{H}, 9.78$. Found: $\mathrm{C}, 68.59, \mathrm{H}, 9.78$.
(2S,3R,4S)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-ol (11) and (2S,3R,4R)-(Z)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-ol (12). To a suspension of $138 \mathrm{mg}(0.536 \mathrm{mmol})$ of $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-23^{\circ} \mathrm{C}$ under N_{2} was added a solution of $80 \mathrm{mg}(0.487$ mmol) of aldehyde 2 in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting mixture was allowed to stir at $-23^{\circ} \mathrm{C}$ for 40 min , and then a solution of $232 \mathrm{mg}(0.572 \mathrm{mmol})$ of stannane $(S)-1 \mathrm{a}$ in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was introduced by cannula. The reaction mixture was then allowed to slowly warm to room temperature. The reaction was quenched after 3.25 h by the addition of saturated aqueous NaHCO_{3}. The resulting mixture was diluted with ether and water and the layers were separated. The aqueous layer was extracted three times with ether; the combined ether extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude oil was purified by flash chromatography on silica gel. Gradient elution with 2.5-5-10-$15-20-25 \%$ ethyl acetate-hexanes afforded 101.2 mg (74%) of a 75:25 mixture of adducts 11 and 12.

11: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.72$ $(\mathrm{dq}, J=15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (ddd, $J=15.4,8.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70,4.50 ; 4.64,4.47(2 \mathrm{~d}, J=6.7 ; 11.3 \mathrm{~Hz}, \mathrm{~A}$ and B of $\mathrm{AB} ; \mathrm{A}^{\prime}$ and B^{\prime} of $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}, 4 \mathrm{H}\right), 4.02(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(d q, J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (apparent q, actually ddd, $J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (dd, J $=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (film) v $3482,1088 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 235 (6), 191 (4), 161 (14), 135 (8), 115 (31), 91 (100), 69 (16); EIHRMS calcd
for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ 235.1334, found 235.1335. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 68.55; H, 8.63. Found: C, 68.62; H, 8.64 .

12: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.80$ (dq, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (ddd, $J=11.0,9.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68,4.53$; $4.62,4.40(2 \mathrm{~d}, J=6.7 ; 11.4 \mathrm{~Hz}, \mathrm{~A}$ and B of $\mathrm{AB} ; \mathrm{A}^{\prime}$ and B^{\prime} of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$), 4.59 (dd, $\left.J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70$ (dq, $J=4.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=7.0,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm}$; IR (film) $v 3485,1098 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 68.55 ; \mathrm{H}, 8.63$. Found: C, 67.98; H, 8.81.
(2S,3R,4R)-(Z)-2-(Benzyloxy)-4-((tert-butyldimethyl-silyl)oxy)-5-hepten-3-ol (13). To a solution of 56 mg (0.34 mmol) of aldehyde 2 and $178 \mathrm{mg}(0.37 \mathrm{mmol})$ of stannane (R)1b in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-23^{\circ} \mathrm{C}$ under N_{2} was added 105 $\mathrm{mg}(0.41 \mathrm{mmol})$ of $\mathrm{MgBr}_{2}{ }^{\circ} \mathrm{OEt}_{2}$. After 1.5 h , the $-23^{\circ} \mathrm{C}$ bath was removed and the mixture was allowed to warm to room temperature. After 1 h , the reaction was quenched with brine and diluted with ether. The resulting layers were separated and the aqueous layer was extracted three times with ether. The combined organic extracts were dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel with 7% ethyl acetate as eluent, affording 78 mg (66%) of adduct 13 : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.56$ (ddd, $J=11.0,7.0,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38$ (ddd, $J=11.0,9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (ddd. $J=$ $9.2,6.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}) 4.62(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{A}$ of AB), 4.40 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ of AB), $3.62(\mathrm{dq}, J=6.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=5.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 (dd, $J=7.0,1.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 138.7, 131.0, 128.3, 128.0 , 127.6, 127.4, 126.6, 78.2, 74.2, 70.8, 68.8, 29.8, 25.9, 18.1,16.7, 13.7, $-4.0,-4.9 \mathrm{ppm}$.
(+)-(2S,4S)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-one (15). To a solution of $42.8 \mathrm{mg}(0.153 \mathrm{mmol})$ of alcohol 3 in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under N_{2} was added, in one portion, $97.1 \mathrm{mg}(0.229 \mathrm{mmol})$ of DessMartin periodinane. ${ }^{10} \mathrm{An}$ additional 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the reagent dissolved within minutes. After ~ 7 min , a white precipitate formed. The reaction was quenched after 20 min by the additon of a few drops of water and solid NaHCO_{3}. The resulting mixture was stirred vigorously for 5 min and then loaded directly onto a silica gel column. Elution with 25% ethyl acetate-hexanes afforded 41.4 mg (97%) of ketone 15: $[\alpha]^{28}{ }_{\mathrm{D}}+151$ (c 1.25, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{dq}, J=15.4,6.6, \mathrm{~Hz}, 1 \mathrm{H})$, 5.39 (ddd, $J=15.4,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.67,4.56 ; 4.60,4.41\left(2 \mathrm{~d}, J=6.8 ; 11.8 \mathrm{~Hz}, \mathrm{~A}\right.$ and B of $\mathrm{AB} ; \mathrm{A}^{\prime}$ and B^{\prime} of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$), 4.23 ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{dd}$, $J=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (film) v $1729 \mathrm{~cm}^{-1}$.
(-)-(2S,4R)-(E)-2-(Benzyloxy)-4-(methoxymethoxy)-5-hepten-3-one (16). The procedure described for ketone 15 was followed with $56.5 \mathrm{mg}(0.20) \mathrm{mmol}$ of a $4: 1$ mixture of alcohols 5 and 6 and $128 \mathrm{mg}(0.30 \mathrm{mmol})$ of periodinane ${ }^{10}$ affording 50 mg (89%) of ketone 16: $[\alpha]^{28}$ D -180 (c 1.37, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.83$ (dq, $J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.38 (ddd, $J=15.4,7.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70,4.55 ; 4.52,4.44(2 \mathrm{~d}, J=$
$6.7 ; 11.7 \mathrm{~Hz}, \mathrm{~A}$ and B of AB ; A^{\prime} and B^{\prime} of $\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right), 4.22(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.33 (s, 3H), 1.71 (dd, $J=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.37 (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ppm ; IR (film) $\nu 1731 \mathrm{~cm}^{-1}$.

General Procedure for $\mathbf{B F}_{3} \cdot \mathbf{O E t}_{2}$-Promoted Kinetic Resolution Studies. To a stirred, cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of stannane (3.0 or 2.0 equiv) and aldehyde (1.0 equiv) in $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.2 equiv). The reaction mixture was stirred for $2-3 \mathrm{~h}$ and then quenched with saturated aqueous NaHCO_{3}, diluted with ether, and allowed to warm to room temperature. The phases were separated and the aqueous phase was extracted twice with ether. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with an ethyl acetate and hexane mixture as eluent. Product ratios were determined by GC analysis (peak enhancement, carbowax 20 M capillary column).

General Procedure for $\mathbf{M g B r}_{2} \cdot \mathbf{O E t}_{2}$-Promoted Kinetic Resolution Studies. To a stirred, cooled $\left(-23^{\circ} \mathrm{C}\right)$ solution of stannane (3.0 or 2.0 equiv) and aldehyde (1.0 equiv) in $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} was added $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ (1.2 equiv). The reaction mixture was stirred at $-23^{\circ} \mathrm{C}$ for 1 h and then warmed to room temperature for $4-12 \mathrm{~h}$. It was then quenched with saturated NaHCO_{3} solution, diluted with ether, and allowed to warm to room temperature. The phases were separated and the aqueous phase was extracted twice with ether. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel with ethyl acetate-hexane mixtures as eluent. Product ratios were determined by GC analysis (peak enhancement, carbowax 20 M capillary column).

General Procedure for the Preparation of \boldsymbol{O}-Methylmandelic Esters. The method described by Trost was employed for the preparation of all O-methyl mandalates. ${ }^{11}$ The following procedure is typical. To a stirred solution of 104 mg (0.30 mmol) of alcohol 7 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added sequentially $89.7 \mathrm{mg}(0.54 \mathrm{mmol})$ of $\mathrm{S}-(+)-\alpha-$ methoxyphenylacetic acid, $74 \mathrm{mg}(0.36 \mathrm{mmol})$ of dicyclohexylcarbodiimide, and a catalytic amount of DMAP. After 1 h, TLC analysis showed complete consumption of starting material. The solution was then concentrated under reduced pressure and the solids resuspended in ether. The solids were removed by filtration through a small pad of Celite. The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel with 15% ethyl acetate in hexane to provide 139 $\mathrm{mg}(93 \%)$ of O-methylmandelic ester (S)-20.

Acknowledgment. This work was supported by research grant R01 AI31422 from the National Institute of Allergy and Infectious Diseases, for which we are grateful. J.A.J. thanks the Department of Education for a fellowship.

Supplementary Material Available: Experimental procedures for 21-28; kinetic resolutions with ($R S$)-1a, $(R S)$-1b, $(E)-1 \mathbf{a},(E)-1 \mathbf{b}$, and mandelates 17-20; and selected ${ }^{1} \mathrm{H}$ NMR spectra (35 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 1, 1994.
 (1) For a recent review, see Marshall, J. A. Chemtracts-Org. Chem. 1992, 5, 75.
 (2) Quintard, J-P.; Elissondo, B.; Pereyre, M. J. Org. Chem. 1983, 48, 1559.
 (3) Keck, G. E.; Abbot, D. E.; Wiley, M. R. Tetrahedron Lett. 1987, 28, 139.
 (4) Koreeda, M.; Tanaka, Y. Tetrahedron Lett. 1987, 28, 143.
 (5) Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, 2183. Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc. 1991, 113, 647 .

[^1]: (6) Marshall, J. A.; Welmaker, G. S. J. Org. Chem. 1992, 57, 7158.
 (7) A portion of this study has appeared in preliminary form: Marshall, J. A.; Luke, G. P. J. Org. Chem. 1991, 56, 483.
 (8) In our preliminary study ${ }^{7}$ we failed to detect the cyclopropane adduct 4. Based on our reexamination of the original spectra, we believe that it was not formed in those earlier experiments. The reason for this deviation is not clear at present. Because it was formed in only a small amount we did not undertake stereochemical elucidation of cyclopropane 4.

[^2]: (9) We have recently succeeded in preparing nonracemic stannanes $(E)-1 \mathrm{a}$ and $(E)-1 \mathrm{~b}$ of high ee and find that they show $[\alpha]_{\mathrm{D}}<10$. This work is currently in progress and results will be published in due course.
 (10) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. Ireland, R. E.; Lin, L. J. Org. Chem. 1993, 58, 2899.
 (11) Trost, B. M.; Belletire, J. L; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370.
 (12) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58,3511 .

[^3]: (13) Wiberg, K. B.; Barth, D. E.; Schertler, P. H. J. Org. Chem. 1973, 38, 378.
 (14) Davis, D. D.; Johnson, H. T., J. Am. Chem. Soc. 1974, 96, 7576. Fleming, I.; Rowley, M. Tetrahedron 1986, 42, 3181. Johnson, C. R.; Kadow, J. F. J. Org. Chem. 1987, 52, 1493.

[^4]: (15) Reviews: Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. Yamamoto, Y.; Shida, N. Advances in Detailed Reaction Mechanisms; JAI Press Inc., 1994, 3, 1-44.
 (16) For an exception see Mikami, K.; Kawamoto, K.; Loh, T-P., Nakai, T. J. Chem. Soc., Chem. Commun. 1990, 1161. For a discussion of factors involved in antiperiplanar us synclinal arrangements in these transition states see Fleming, I., Chemtracts-Org. Chem. 1991, 21.
 (17) Certain intramolecular additions favor the synclinal arrangement: Denmark, S. E.; Weber, E. J.; Wilson, T. M.; Willson, T. M. Tetrahedron 1989, 45, 1053.

[^5]: (18) A reviewer has suggested that the formation of adducts 11 and 12 may proceed through tricoordinated Mg chelates with antiperiplanar geometry as in i. Models indicate that such arrangements may be possible but with significant deviation from the optimal attack angle on the aldehyde carbonyl.

[^6]: (19) Cf: Gung, B. W.; Wolf, M. A. J. Org. Chem. 1993, 58, 7038; Gung, B. W. Tetrahedron Lett. 1991, 32, 2867.
 (20) For typical experimental protocols, see Marshall, J. A.; Wang, X-j. J. Org. Chem. 1991, 56, 960 .

[^7]: (21) Marshall, J. A.; Luke, G. P., J. Org. Chem. 1993, 58, 6229.

